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For large values of x, the Fresnel integrals may be approximated
by:

C sin [/c(7i/2));2] dy = l/2(/c)1/2- (nkx)~ * cos [/c(7r/2)x2] (17)

COS dy = \/2(k /2 1 sin [/c(;r/2)x2] (18) L0,LR,L

If Eq. (13) is normalized by /, integrated from x large to infinity,
expanded into its real and imaginary components, it may be
expressed as:
K(x)-£(oo)]// - (l/(2)1/27i/cx)[sin [k(n/2)x2 + n/4]

-zcos[/c(7i/2)x2 + 7r/4]} (19)
The amplitude of the oscillation is recognized to be l/(2)1/27i/cx.
This formula is only true for large values of x; however, Fig. 1
indicates very good agreement even for small values of x.

Concluding Remarks
This Note has presented a simple closed-form expression for

determination of the final attitude dispersions of a symmetrical
roll accelerated vehicle subjected to body fixed transverse torque.
In addition, an expression describing the oscillatory envelope
is also given. Comparison of the closed-form solutions with
numerical integration of the equations indicates good agreement;
hence, the closed-form solutions give the analyst a quick and
accurate means of evaluating this problem.

1 Rosser, J. B.,
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Suboptimal Controller for a Linearized
n-Body Spacecraft

VICTOR LARSON*
Jet Propulsion Laboratory, Pasadena, Calif.

Nomenclature
B = diagonal damping matrix
DEZ\ } — vector deadzone function
E = unit (identity) matrix
i = integer used to designate a joint
k = diagonal stiffness matrix
n = number of rigid bodies in spacecraft model
r = number of degrees of freedom
j. = matrix used in state equations [see Eq. (1)]
yk,y = relative angular motion at joint /c; y is r — 3 x 1

vector having components yk, k = 1,2,..., r — 3
= attitude angles of base body 0 (components of

vector 0}; angular velocity measure numbers of
base body 0, i = 1,2,3 (components of vector

) = angular velocity vector of base body 0; relative
angular velocity components yk, k= 1,2,...,
r — 3; co has components co0 and COR

,A2\,A22 — elements of partitioned matrix appearing in Eq. ( l )
= basis vectors for base body 0, i = 1, 2, 3
= damping coefficients for joint /
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Co, C(o0, Cy, CwR = control gain matrices
Fijf M>_. = interaction force and moment on body / due to

joint j
FA. M; = vectors representing externally applied forces and

moments to body /
= stiffness coefficients for joint i
= vector forcing function for base body; vector

forcing function for n-\ remaining bodies;
vector L has components L0 and ER

= vector forcing functions used in defining L; L0
and ER are formed from L0 and LR by not
including the terms Ky + By

= vector forcing functions used in defining L0;
LOO is the contribution to L0 due to forces F0
and moments M0 applied to the base body;
LOK is the contribution made by forces F^ and
moments M; with / ^ 0

= vector forcing functions used in defining ER;
ERO is the contribution to LR due to F0;
ERR is the contribution made by F; and Mx
with / ^ 0

— vector forcing function used in defining L00.
LOO is formed from L0o by not including thd
moment M0

= suboptimal control vector for base body 0;
suboptimal control vector for n — \ remaining
bodies

U0,UR

Introduction

FOR deep-space missions, the requirements placed on
antenna pointing, articulation control, science platform

settling times, etc., tend to become continually more stringent.
Moreover, to meet the objectives of the scientific experiments
and to provide isolation from the radiation produced by the
power source, booms are frequently employed. These facts dictate
that a suitable spacecraft model must be determined and, in
addition, that sensor noise and plant disturbances be accounted
for.

Considerable attention, in the open literature, has been focused
on the problem of developing a suitable set of deterministic
dynamical equations for a spacecraft.1 ~ 6 Recently, a particularly
elegant albeit complicated set of dynamical equations for an
rc-hinged rigid-body spacecraft has been developed.2 The salient
features of this set of dynamical equations are that 1) constraint
torques do not appear, and 2) the number of variables involved
is equal to the number of degrees of freedom of the system.
Stochastic control theory has also been given special attention
in the open literature. Reference 7 is devoted exclusively to
linear stochastic optimal control of linear systems subject to
the expected value of a quadratic cost function.

In the present work, the objective is to determine a controller
which makes use of the elaborate, deterministic model of the
spacecraft and, in addition, accounts for sensor noise, distur-
bances, etc. In essence, an optimal stochastic controller is
sought. However, because of the practical importance of ease of
implementation, simplicity, and reliability, a suboptimal
stochastic controller is determined.

It is known that a solution can be found to a linear
stochastic optimization problem involving a quadratic cost
functional. However, the plant representing the dynamics of the
spacecraft is nonlinear. In addition, a single quadratic cost
function which accounts for all of the desired characteristics
of the controller cannot be found. Nevertheless, a suboptimal
stochastic controller is obtained by: 1) appropriately linearizing
the dynamical model of the spacecraft to obtain the plant;
2) invoking the "certainty-equivalence" principle of modern
control theory to arrive at the structure of the optimal linear
controller; 3) generating the suboptimal controller.

The contributions of this paper include the casting of the
dynamical equations for the spacecraft in a form suitable for
optimal stochastic control theory and the development of a
suboptimal stochastic controller. To the writer's knowledge, a
stochastic controller based on a realistic model of a complex
spacecraft has not been previously obtained.
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Fig. 1 Block diagram of suboptimal controller for a linearized n-body
spacecraft.

Linearized Dynamical Equations for an N-Hinged
Rigid-Body Spacecraft

In this section, the linearized dynamical equations for an
n-hinged rigid-body spacecraft are provided. In Refs. 1-3, the
dynamical equations for an rc-body vehicle are developed. Start-

ing with these equations, a linearized set of state equations can
be developed (see Refs. 5 and 6). In vector-matrix notation, the
state equations becomet

t See Definitions of Symbols for definitions of all symbols used in
this paper.
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where

A22~1(E+A2&-1A12A2

(2)

(1)

Stochastic Controller for Multihinged Rigid-Body Spacecraft
In this section, a stochastic controller based on the dynamical

model presented above is given. The form of the stochastic
controller appropriate for a linear problem subject to a quadratic
cost functional is retained; however, the form of the control
function for this special case is passed through desirable non-
linearities peculiar to attitude control before being applied to
the plant (see Fig. 1).

In this analysis, the suboptimal vector function u0 for the
base body is obtained by

1) Generating the actuating signal u used to fire the thrusters
located on the base body according to (note that u retains the
structure of the optimal u* for a linear problem but the control
gains are obviously not based on the linear formulation)

2) Passing the function u through a vector deadzone function
to obtain the applied moment M0 and the associated applied
thrust F0 acting on the base body; this contribution to UQ is
given by

1
3

y, |M0J bib? \DEZu (4)[ 3 -i
X \M0t\bibiT \

t= i J

, = «-'[-

3) Generating the terms L0o, LOR, and LR0. The vector control
function u0 is given by

3 r]
i=i °' l l J

Correspondingly, the vector control function for the remaining
n— 1 bodies is given by

Note that the time-varying functions L0o, LOR, LRO, and LRR
are based on y. The control gains Ce, C^, Cy, Cw/{ are, of
course, selected so that the pointing requirements are met.

Description and Uses of Suboptimal Stochastic Controller
From Fig. 1 it is seen that the stochastic controller consists

of a Kalman filter adjoined to the generators of u0 and UR.
The measurement vector z, in this paper, consists of the sensed
attitude angles of the base body. The estimated state x consisting
of 0, a>0, y, O)R is used to generate the actuating signal u
which fires the thrusters located on the base body. In essence,
the applied moment M0 tends to null a weighted combination of
the attitude and angular velocity of the base body and the
relative motion of the remaining n— 1 bodies. Note that, if it is
not desirable to null a specific relative motion yk and its
associated rate yk, then the appropriate components of the
control gain matrices Cy and C&R are zero. Note, too, that the
system matrices^ i, A22, A12,_A2i, a are constant. The Kalman
gain matrices Ke, Xwo, K^ Ky and the control gain matrices
Ce, Cwo, Cfo^ Cy can be approximated by piecewise constant
functions, if it is so desired.

This stochastic controller will be used to study the effects
of interactions of an articulated science platform (undergoing
small-angle slews) on the base body motion, and to study the

effects of interactions of booms (undergoing small oscillations)
on thrust vector control performance. Specifically, this controller
will be used to analyze the Mariner Jupiter Saturn (MJS '77)
spacecraft in the cruise, the thrust vector control, and the
articulation control modes. The MJS '77 stringent accuracy
requirements and settling times associated with the articulated
science platform dictates that an elaborate dynamical model
be used and that disturbances and sensor noise be properly
accounted for. It is planned that the computational aspects and
simulation results obtained from this formulation will be
published in the near future.
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Nomenclature
w = mass at burnout normalized by W
qy. = product of dynamic pressure and angle of attack normalized

by the reference condition value of 33 516 N-deg/w2 (700 Ib-
deg/ft2) (see Fig. 2)

r = recovery resizing factor, vehicle inert mass growth per unit
mass of subsystem growth

W = wing mass at the reference condition, 5149 kg (11,352 Ib)
AW = change in wing mass normalized by W
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